

NGSC meeting February 18, 2022

From Deterministic to Probabilistic

- Why do probabilistic and where to start

Aakash Bangalore Satish, Sang-ri Yi

University of California, Berkeley

NSF award: CMMI 1612843

NSF NHERI Network

Aakash Bangalore Satish bsaakash@berkeley.edu

SimCenter

Goal: Develop an open-source framework and extensible software tools for researchers in natural hazards engineering

Transformational software that supports **uncertainty quantification (UQ), performance-based engineering, community resilience**

"There is **uncertainty inherent in all aspects of earthquake engineering** that **needs to be addressed** on an ongoing basis with transformative research, process and code development, and focused implementation programs."

- National Research Council 2011. *Grand Challenges in Earthquake Engineering Research: A Community Workshop Report*. Washington, DC: The National Academies Press. https://doi.org/10.17226/13167

SimCenter

SimCenter's scientific workflow

Why UQ workflow?

Uncertainty from several sources, including:

Inherent variability

🧶 SimCenter 🚟

- Model parameter uncertainty
- Model form uncertainty

RECOVERY

SIMULATION

SimCenter's scientific workflow

SimCenter Applications

Types of UQ

Forward Uncertainty Quantification

Inverse Uncertainty Quantification

Forward UQ

• Propagation of uncertainty from inputs to outputs

is essential in making decisions

🧶 SimCenter 🚟

Forward UQ

• Based on assumptions on inputs, predict the uncertainty in outputs

Forward UQ

• Let us first consider single RV / Response

How do we get the input distribution?

Probability distribution of RV

• Everything is **possible** but not everything is **probable**

Engineering Judgement + **Observation**

- Based on underlying physics of quantity
- Select a simple distribution and apply reasonable limits
- Bayesian updating →inverse UQ

mCenter

Known range of interest - Uniform distribution Assumption - Gaussian with 10% variation From reference

Forward Propagation

• Based on assumptions on inputs, predict the uncertainty in outputs

- A straightforward approach
- Is the model numerically expensive?

Monte Carlo sampling

Few simulations as much as possible

- Better UQ algorithms
 - e.g. Latin hyper cube sampling
- Approximation methods e.g. Surrogate modeling
- Combination of both e.g. Multi-fidelity modeling

🧶 SimCenter 🚟

Reliability Analysis

- Probability of the response exceeding a threshold level •
- Important for design decision •

imCenter 🚟

- A straightforward approach: Monte Carlo sampling
- When the model is expensive & when failure probability is low ٠ It is desirable to reduce the number of simulations

 $P_f = 10\%$ requires 1000 simulations

 $P_f = 0.001\%$ requires 1000000 simulations

$$c. o. v = \sqrt{\frac{NP_f}{1 - P_f}} < 0.1$$

- To reduce the number of simulations
 - Better UQ algorithms

Importance sampling, subset simulation

- Approximation methods

Surrogate modeling, First-order approximations

- Combination of both

Global Sensitivity Analysis

🧶 SimCenter 🚟

Surrogate modeling

• Response surface representation

SimCenter 🚟

- Usually the curve (surface) is very flexible & general Neural networks, Gaussian process model, polynomial chaos...
- Design of experiments are used to reduce the number of simulations

Types of UQ

Forward Uncertainty Quantification

Inverse Uncertainty Quantification

Inverse UQ

• Based on observed data, update the assumptions about the inputs and/or the model

🧶 SimCenter 🚟

Inverse UQ Methods – Bayesian calibration

 Based on observed data, update the distribution of the inputs to be consistent with the observations

🥨 SimCenter 🚟

Inverse UQ Methods – Model Class Selection / Averaging

• Based on observed data, update the probability of a set of plausible models

🧶 SimCenter 🚟

"All models are wrong, but some are useful" – George E. P. Box

- Model parsimony: if two models fit the data equally well, the simpler model is assigned higher probability
- Model class selection select the best model from the set and use for prediction
- Model class averaging select all or the best few models, take weighted average of predictions from these models

Running UQ

• Toolbox/software packages for UQ analysis

🥸 SimCenter 🚟

quoFEM

• A software tool with a user interface developed in SimCenter

"You bring the FEM model, we do the rest"

• Need more than what we have?

🧶 SimCenter 🚟

- Build your own quoFEM
 Github page: <u>https://github.com/NHERI-SimCenter/quoFEM</u>
- Tell us what you need SimCenter Forum: <u>http://simcenter-messageboard.designsafe-ci.org/smf/index.php</u>

quoFEM (v.2.4)

Simulation (FEM)	UQ Type	Algorithm
Model OpenSees	Sampling —	 Latin Hypercube Sampling Monte Carlo Gaussian Process Regression Polynomial Chaos Expansion
FEAPpy	Global Sensitivity	 Quasi-Monte Carlo Probability-model-based approximation
OpenSeesPy	Reliability —	 Local Reliability (FORM, SORM,) Global Reliability Importance Sampling
Custom	Parameter Estimation	 OPT++GaussNewton NL2SOL
	Bayesian Calibration	DREAM TMCMC
Surrogate	Custom UQ ——	 Custom UQ algorithm
Ινισαει	Surrogate Modeling	 Gaussian process surrogate modeling Gaussian process multi-fidelity modeling

🏽 SimCenter 🚟

🐯 quoFEM								_		×
File View Help	Examples									
quoFEM Ap	plication								Log	in
UQ	UQ Engine Dakota			•						
FEM	Dakota Method Category Forv	ward Propagation			-	Parallel Execution				
	Method LHS Para	ameters Estimation								
RV	# Samples 500 Relia	erse Problem ability Analysis								
	Seed 482 Sen	sitivity Analysis								
Qol										
RES										
		_								
	RUN		RUN at DesignSafe		GET from DesignSafe		Exi	t		
Program Output									e	F ×
19:33:01 - Welco	me to quoFEM									

🐏 input,ison			— — — ×
File View Help Examples			
quoFEM Application			Login
UQ Finite Element Method Applicat	ion OpenSees 🔻 OpenSees		
FEM Input Script C:/SimCent	FEAPpv OpenSeesPy er/quoFEM/Exa Custom c/TrussModel.tcl		Choose
RV Postprocess Script C:/SimCente	er/quoFEM/Examples/qfem-0001/src/TrussPost.tcl		Choose
Qol			
RES			
RUN	RUN at DesignSafe	GET from DesignSafe	Exit
Program Output			8 ×
17:40:09 - Welcome to quoFEM 18:28:08 - Loading Example: Two-Dimensional Truss: 9 18:28:08 - Example Loaded	Sampling, Reliability and Sensitivity		

SimCenter 👯

🗱 input.json File View Help	Examples											_		×
quoFEM Ap	plication												L	ogin
UQ	Input Random Var	iables		Add Ren	nove	Correlation Matrix	Export	Imp	oort					
FEM RV Qol RES	Variable Name E Variable Name P Variable Name Ao Variable Name Au	Distribution Lognormal Distribution Normal Distribution Lognormal Distribution Normal	Mea ↓ 205 Mea ↓ 25 Mea ↓ 250 Mea ↓ 500	in Stand in Stand an Stand in Stand in Stand in Stand	dard Dev dard Dev dard Dev	Show PDF Show PDF Show PDF		E P Ao Au	E 1.0 0.0 0.0 0.0	Hatrix P 0.0 1.0 0.0 0.0	Ao 0.0 1.0 0.2	Au 0.0 0.2 1.0		
Program Output	RUN		RU	IN at DesignSafe		GET	from DesignSafe					Exit		₽×
17:40:09 - Welcor 18:28:08 - Loadin 18:28:08 - Examp	me to quoFEM g Example: Two-Dimens le Loaded	sional Truss: Sampl	ing, Reliability a	and Sensitivity										< >

SimCenter 👯

🐺 input.json File View Help Ex	amples				-	o ×
quoFEM Applica	tion					Login
UQ Q	uantities of Interest	Add	Remove			
FEM O	Variable Name Node_3_Disp_2	Length 1				
RV	Node_2_Disp_2	Length 1				
Qol						
RES						
	RUN	RUN at Desi	gnSafe	GET from DesignSafe	Exit	
ogram Output						8
7:40:09 - Welcome to 8:28:08 - Loading Exa	quoFEM ample: Two-Dimensional Truss: Sam	pling, Reliability and Sensiti	vity			

Conclusion

"An estimate without a standard error is practically meaningless." (Jeffreys 1967)

- Deterministic result is just one of many possible outcomes
- In order to make decisions, we need to also know how **probable** the outcome is
- There are tools available out there to help you apply UQ methods
 UQ[py]Lab
 Ucertainty Quantification to be the to be to be

Thank you for your attention!